Convergence Rates for the Iteratively Regularized Landweber Iteration in Banach Space

نویسنده

  • Barbara Kaltenbacher
چکیده

In this paper we provide a convergence rates result for a modified version of Landweber iteration with a priori regularization parameter choice in a Banach space setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative methods for nonlinear ill-posed problems in Banach spaces

In this paper, we study convergence of two different iterative regularization methods for nonlinear ill-posed problems in Banach spaces. One of them is a Landweber type iteration, the other one the iteratively regularized Gauss– Newton method with an a posteriori chosen regularization parameter in each step. We show that a discrepancy principle as a stopping rule renders these iteration schemes...

متن کامل

New three-step iteration process and fixed point approximation in Banach spaces

‎In this paper we propose a new iteration process‎, ‎called the $K^{ast }$ iteration process‎, ‎for approximation of fixed‎ ‎points‎. ‎We show that our iteration process is faster than the existing well-known iteration processes using numerical examples‎. ‎Stability of the $K^{ast‎}‎$ iteration process is also discussed‎. ‎Finally we prove some weak and strong convergence theorems for Suzuki ge...

متن کامل

A Kaczmarz Version of the REGINN-Landweber Iteration for Ill-Posed Problems in Banach Spaces

In this work we present and analyze a Kaczmarz version of the iterative regularization scheme REGINN-Landweber for nonlinear ill-posed problems in Banach spaces [Jin, Inverse Problems 28(2012), 065002]. Kaczmarz methods are designed for problems which split into smaller subproblems which are then processed cyclically during each iteration step. Under standard assumptions on the Banach space and...

متن کامل

Inexact Newton-Landweber Iteration in Banach Spaces with NonSmooth Convex Penalty Terms

By making use of tools from convex analysis, we formulate an inexact NewtonLandweber iteration method for solving nonlinear inverse problems in Banach spaces. The method consists of two components: an outer Newton iteration and an inner scheme. The inner scheme provides increments by applying Landweber iteration with non-smooth uniformly convex penalty terms to local linearized equations. The o...

متن کامل

Strong convergence theorem for finite family of m-accretive operators in Banach spaces

The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011